

Time Resolved Measurement of Ecosystem-Atmosphere NH3 Exchange Using the Eddy Covariance Technique

Marc L. Fischer, David Littlejohn Lawrence Berkeley National Laboratory 12/09/2005

Outline

- Motivation Mechanistic Studies Benefit from Time Resolution
- Instrument Description Laser Spectrometer & Fast Sampling System
- Initial Results Field Tests at Richmond, CA
- Conclusions

Unit Conversions

- Units for NH₃ flux are chosen to match measurement time scale (µmol m⁻² hr⁻¹)
- Conversion to other units

```
1 kg N/ha/yr = 0.82 or \sim 1 µmol m<sup>-2</sup> hr<sup>-1</sup>
1 ng N/m<sup>2</sup>/s = 0.26 or \sim \frac{1}{4} µmol m<sup>-2</sup> hr<sup>-1</sup>
```

Comparison of Some NH₃ Fluxes

Ecosystem Description	NH3 Flux µmol m ⁻² hr ⁻¹		Reference
Deposition	min	max	
Forests, Lake Tahoe	1.0	4	Tarnay , 2001
Grasslands, SF Area Roads	2.4	12	Weiss, 1999
Modeled Dry Dep. To CA	0.6	24	Weiss, 2005
Modeled Dry Dep to UK	0.1	12	Fornier et.al., 2005
Grass near S.Carolina Farm	78	544	Phillips et.al., 2004
Emission			
Riparian, (Un)grazed	1	58	Walker et.al., 2002
Agricultural Field	78	3500	Zhu et.al, 2000
Agricultural Field	2160	10802	Meyers et.al., 2003

Technical Approach (1)

Sensitive NH₃ analyzer

- 11 µm Quantum Casade Laser Spectrometer
- Low-volume multi-pass absorption cell
- Separate channels for frequency lock and gain normalization
- Sensitivity: 300 pptv RMS @ 10 Hz sample rate
- Stability: 40 pptv RMS over 100 s integrations

11 μm NH₃ Spectrometer Aerodyne Res. Inc

Technical Approach (2)

Fast-response Gas Sampling

- 1) High sample flow
 - ~ 20 liters min⁻¹ @ 1 atm
 - $--> \tau cell \sim 0.15 s$
- 2) Heated Inlet Manifold
 - Materials:
 - PFA Teflon
 - Siloxyl coated glass
 - T > 35-40 C all lines
- 3) Automated Test of Transient Response
 - Zero/span test every ½ hr
 - Fit double exponential response
 - 80% response $\tau 1 = 0.3-0.4 \text{ s}$
 - 20% response $\tau 2 = 4$ s
 - Measured response used to correct NH3 flux for loss of signal due to smoothing
 - Typically factor 30-50%

Technical Approach (3)

Field package for extended outdoor operation:

- Automated calibration
- Automated LN2 fill
- Automated data transfer
- Size 2m x 1m x 1m
- Weight 220kg
- Power 25 Amps @ 120VAC

Instrument Package on Scaffold, Richmond, CA

Sonic anemometer

RENCE BERKELEY NATIONAL LABORATORY

Field Testing (1): NH₃ Release Experiment

- Field test at Richmond, CA
- Instrument located on N. side of shrub/grass field
- Fill array of cups on 10m grid containing 4% NH₄OH solution
- Large initial NH₃ flux observed
- NH3 flux decayed exponentially w/ time as NH₄ depleted
 - Integrated flux equals 25%
 of NH₄ initially applied to cups
- Estimation of flux footprint, advection, and deposition to canopy in progress

Field Testing(2): Sensitivity Test

3 Day test

- Richmond, CA
- No NH₃ released
- Small variations in flux $-RMS = 2 \mu mol m^{-2} hr^{-1}$
- Sensitivity sufficient for measurement campaigns in many natural ecosystems
- Ongoing development will likely improve sensitivity further

Conclusions

- Time resolved NH_3 flux measurements valuable for quantification of diurnal-seasonal variations in NH_3 deposition and emission
- Sensitive eddy covariance measurements of NH₃ flux have been achieved
 - —Instrument sensitivity sufficient for measurement in variety of settings
- Identification of future field sites in progress

Acknowledgements

- This work was made possible by the hard work and advice of many people including:
 - Great summer students: Benet Duncan (CU Boulder) and Joshua Hatch (Stanford University)
 - Skilled professionals at LBNL: Sebastien Biraud, Robert Conroy, Tim Williams, and Dennis DiBartolomeo
 - Colleages: Nancy Brown, Dennis Baldocchi, Kaw Tha Paw U, and Melissa Lunden
- This work was supported by a Laboratory Directors Research and Development Grant at the Lawrence Berkeley National Laboratory